Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene.
نویسندگان
چکیده
The (sqrt[3]×sqrt[3])R30° honeycomb of silicene monolayer on Ag(111) was found to undergo a phase transition to two types of mirror-symmetric boundary-separated rhombic phases at temperatures below 40 K by scanning tunneling microscopy. The first-principles calculations reveal that weak interactions between silicene and Ag(111) drive the spontaneous unusual buckling in the monolayer silicene, forming two energy-degenerate and mirror-symmetric (sqrt[3]×sqrt[3])R30° rhombic phases, in which the linear band dispersion near the Dirac point and a significant gap opening (150 meV) at the Dirac point were induced. The low transition barrier between these two phases enables them to be interchangeable through dynamic flip-flop motion, resulting in the (sqrt[3]×sqrt[3])R30° honeycomb structure observed at high temperature.
منابع مشابه
Monte Carlo study of the semimetal-insulator phase transition in monolayer graphene with a realistic interelectron interaction potential.
We report on the results of the first-principles numerical study of spontaneous breaking of chiral (sublattice) symmetry in suspended monolayer graphene due to electrostatic interaction, which takes into account the screening of Coulomb potential by electrons on σ orbitals. In contrast to the results of previous numerical simulations with unscreened potential, we find that suspended graphene is...
متن کاملStructural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices
Superlattice provides a new approach to enrich the class of materials with novel properties. Here, we report the structural and electronic properties of superlattices made with alternate stacking of two-dimensional hexagonal germanene (or silicene) and a MoS2 monolayer using the first principles approach. The results are compared with those of graphene/MoS2 superlattice. The distortions of the ...
متن کاملSpontaneous symmetry breaking of population in a nonadiabatically driven atomic trap: an Ising-class phase transition.
We have observed spontaneous symmetry breaking of the population of Brownian particles between two moving potentials in the spatiotemporally symmetric system. Cold atoms preferentially occupy one of the dynamic double-well potentials, produced in the parametrically driven dissipative magneto-optical trap far from equilibrium, above a critical number of atoms. We find that the population asymmet...
متن کاملPossible Electric-Field-Induced Superconducting States in Doped Silicene
Silicene has been synthesized recently, with experimental evidence showing possible superconductivity in the doped case. The noncoplanar low-buckled structure of this material inspires us to study the pairing symmetry of the doped system under a perpendicular external electric field. Our study reveals that the electric field induces an interesting quantum phase transition from the singlet chira...
متن کاملSpontaneous symmetry breaking in a quadratically driven nonlinear photonic lattice
We investigate the occurrence of a phase transition, characterized by the spontaneous breaking of a discrete symmetry, in a driven-dissipative Bose-Hubbard lattice in the presence of two-photon coherent driving. The driving term does not lift the original U(1) symmetry completely and a discrete Z2 symmetry is left. When driving the bottom of the Bose-Hubbard band, a mean-field analysis of the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 110 8 شماره
صفحات -
تاریخ انتشار 2013